
Astronomy & Astrophysics manuscript no. 1618 c© ESO 2009
October 3, 2009

Automated supervised classification of variable stars in the CoRoT
programme ?

Method and application to the first four exoplanet fields??
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ABSTRACT

Context. The CoRoT space mission has two main scientific goals: exoplanet searches, and asteroseismology. Detecting planets using
the occultation (or transit) method requires continuous monitoring of several thousand stars for a long period and with high photo-
metric precision. As an important consequence, many high-quality light curves are obtained. Among this sample, a large fraction of
variable stars is present, most of them previously unknown. This work describes the supervised classification of those newly measured
variables, using automated methods. The methods were developed in the framework of the CoRoT mission, but they can easily be
applied to other databases.
Aims. In this work, we describe the pipeline for the fast supervised classification of light curves observed by the CoRoT exoplanet
CCDs. We present the classification results obtained for the first four measured fields, which represent a one-year in-orbit operation.
Methods. The basis of the adopted supervised classification methodology has been described in detail in a previous paper, as is its
application to the OGLE database. Here, we present the modifications of the algorithms and of the training set, to optimize the per-
formance when applied to the CoRoT data.
Results. Classification results are presented for the observed fields IRa01, SRc01, LRc01, and LRa01 of the CoRoT mission. Statistics
on the number of variables and the number of objects per class are given and typical light curves of high-probability candidates are
shown. We also report on new stellar variability types discovered in the CoRoT data. The full classification results are publicly
available.

Key words. stars: variable; stars: binaries; techniques: photometric; methods: statistical; methods: data analysis

? The CoRoT space mission, launched on 27 December 2006, has
been developed and is operated by the CNES, with the contribution of
Austria, Belgium, Brazil , ESA, Germany, and Spain.
?? The full classification results will be available electronically at the
CDS, via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5).

1. Introduction

The CoRoT mission, successfully launched on 27 December
2006, is currently monitoring thousands of stars with high pho-
tometric precision, with the intention of finding exoplanets using
the occultation method (see the “CoRoT Book”, Fridlund et al.
2006). The nominal life time of the mission is 2.5 years, and
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in total, more than 120 000 light curves will be measured.
Observing fields have been selected that contain a large frac-
tion of red dwarfs (spectral types from F to M), to increase the
detection chances of planetary transits. Hence, there is a strong
observational bias towards cool main-sequence stars.

As an important by-product, a database of light curves with
excellent time-sampling and unprecedented photometric preci-
sion is produced. Hidden in this database are many light curves
of variable stars, of both known and still unknown nature. Before
any science can be done with the data, scientists need to identify
their objects of study. Since the database is large (∼40000 light
curves), having to extract these targets in a manual way would be
very time-consuming. Moreover, scientists interested in differ-
ent objects would each have to screen the whole database again.
Automated classification methods can save us lots of time, they
are repeatable, and they are not subject to the human subjectivity
inherent in manual methods.

In this work, we describe an automated supervised classifi-
cation method, developed in the framework of the CoRoT mis-
sion. The basis of the method has been described in detail in
Debosscher et al. (2007), hereafter denoted as Paper I, and its
application to the OGLE database is described in Sarro et al.
(2009), hereafter denoted as Paper II. In the latter, we have
shown that the classifiers are capable of assigning probabilistic
class labels, which are highly reliable for the classical variables
studied most in the literature and for eclipsing binaries. We also
pointed out how we plan to improve the classifiers and the train-
ing set containing the necessary class definitions for a supervised
classifier. The classifiers presented here are an adaptation of the
classifiers presented in Paper I, with the goal of optimizing their
performance when applied to CoRoT data. Hereafter, we refer
to this adapted version as the “CoRoT Variability Classifier”
(CVC).

We present the results obtained with the CVC for the
first four exoplanet fields measured by CoRoT (IRa01, LRc01,
SRc01, and LRa01, see below for an explanation of the field des-
ignations). Estimates of the number of variables for every field
are given, as well as statistics on the population of the different
classes considered by the CVC. Light curves of the best candi-
dates are shown, together with phase plots made with the de-
tected dominant frequency. We also report on the presence of
new variability types or border cases of already known variabil-
ity types. A description is given of the classification output, as
will be made available in the so-called N3 product delivery in
the public database of the mission. This should allow users of
the catalogue to interpret the classification results in such a way,
that they can create candidate lists of their science objects ac-
cording to some pre-defined criteria, without having to know all
details of the classification process.

2. Data description

The data treated here include all the calibrated (i.e. N2-level)
light curves that have been measured by the CoRoT exoplanet
CCDs during the IRa01, LRc01, SRc01, and LRa01 observ-
ing runs (visual magnitudes of the stars roughly between 12
and 15.5). Some basic properties of the datasets are listed in
Table 1. The time sampling of the light curves is 32s, but for
the majority of the light curves, an average is taken over 16 such
measurements, resulting in an effective time resolution of 512s.
For a fraction of the light curves (or parts of some light curves),
the original 32s sampling is retained. These are high priority tar-
gets that have been measured in oversampling mode.

Prior to the data analysis, we removed all measurements hav-
ing non-zero quality flags in the N2 product delivery, retain-
ing only valid flux measurements. These flagged measurements
include, e.g., measurements taken during SAA (South-Atlantic
Anomaly) passages. It concerns roughly 1.8% of the data for
the worst cases. The removal of these bad datapoints causes the
equidistance of the time series to be lost and changes the window
function. This has to be taken into account in the analysis (e.g.
FFT can no longer trivially be used, as equidistancy is needed
here). The brighter stars in the exoplanet fields are measured in
three colours (RGB), obtained using a dispersion device. The
goal is to distinguish between planetary transits and stellar ac-
tivity, the latter being highly chromatic. The dispersed light is
integrated in these RGB bands onboard, according to a mask se-
lected from a set of 256 predefined ones, depending on target
characteristics, such that approximately 40% of the light falls in
the R band, 30% in the G band, and 30% in the B band. Thus,
the definition of the bands (their limits in wavelengths) are tar-
get dependent. Since the fraction of the total stellar flux in ev-
ery colour channel is held constant, we cannot use the fluxes in
the three channels to obtain calibrated colour information on the
stars. When dealing with chromatic light curves, we thus sum up
the fluxes in the three channels and use the resulting ‘white’ flux
for our purposes.

3. Computation of the classification parameters
from the light curves

The light curve analysis method is basically the same as de-
scribed in Paper I. However, some adaptations had to be made
to account for some unavoidable systematics encountered in the
CoRoT N2 data: trends in the light curves due to changes in the
amount of incident stray light during the run, periodic changes in
flux caused by the satellite orbit, and discontinuities in the light
curves due to cosmic ray hits on the CCDs. To remove the sys-
tematic trends, we subtracted a second-order polynomial from
the light curves, where the coefficients are computed for every
light curve separately. We note that some objects such as Be-
stars or long-period variables can show intrinsic trends in their
light curves. It is clear that, in some cases, we remove part of
these real trends as well. This is undesirable, since the presence
of such an intrinsic trend can contain important astrophysical
information on the type of object. However, we cannot avoid
this for the moment, because of the presence of the instrumental
trends. Since it is essential that pulsation frequencies are recov-
ered as much as possible, we preferred to subtract the trends for
each object, prior to frequency analysis.
Frequency analysis was then performed, using a Lomb-Scargle
periodogram (Lomb 1976; Scargle 1982). The frequency range
and resolution of the periodogram was determined for each light
curve individually, because the time sampling is not the same
for all the light curves. As a lower frequency limit, we originally
used f0 = 1/Ttot, with Ttot the total time span of the observations.
The upper limit fN varies from light curve to light curve, with
fN ' 84 d−1 for a 512s sampled light curve, and fN ' 1350 d−1

for the 32s sampled light curves. For the frequency resolution,
we took ∆ f = 0.1/Ttot (for IRa01 and SRc01) or ∆ f = 0.2/Ttot
(LRc01 and LRa01, for CPU reasons). As can be seen from
these expressions, the frequency resolution depends on the to-
tal time span of the observations. This is necessary, since the
width of the spectral peaks can be shown to be equal to 2/Ttot
(strictly speaking this is only valid for equidistant time-series).
In total, we determined three different frequencies per object, in
an iterative scheme of spectral peak selection and prewhitening.
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CoRoT observation run Total number of Total time Number of oversampled
light curves span (days) (32s) light curves

IRa01 (Initial run, anti-centre direction) 9871 52 1003
SRc01 (First short run, centre direction) 6972 24 1000
LRc01 (First long run, centre direction) 11408 147 1156

LRa01 (Second long run, anti-centre direction) 11408 131 1260

Table 1. Basic properties of the data, coming from the first 4 exoplanet fields, having a 512s nominal sampling time.

Every prewhitening step consists in subtracting a harmonic least
squares fit of the form

y(t) =

4∑

j=1

(a j sin 2π fi jt + b j cos 2π fi jt) + b0, (1)

with i = 1, 2, 3. The fitting coefficients obtained in each step pro-
vide us with an overall good description of the variability present
in the light curves. The detected frequencies and fitting coeffi-
cients are then transformed into suitable classification parame-
ters (depending on the classifier used). It is crucial that these
parameters describe the intrinsic variability of the measured ob-
ject as precisely as possible and are not contaminated by instru-
mental effects (any signature in the light curve not caused by the
object’s real variability).
All classification results presented in this work are obtained
using attributes, derived from the abovementioned light curve
parameters. An extended version of our classifiers can handle
colour attributes such as B − V magnitudes if they are available.
At this stage, however, we preferred not to include any spectral
attributes in the classifiers for the CoRoT data, because no re-
liable colours (such as Johnson B − V or Strömgren b − y) are
available yet for the majority of the stars described here. The
use of an unreliable colour index can have a very bad influence
on the classification results so should be avoided. Finally, the
unprecedented photometric precision and continuous time cov-
erage of the CoRoT data make it worthwhile to investigate how
well the classes can be separated on the basis of the light curve
information alone.

4. Avoiding instrumental effects

Every photometric database unavoidably has its own instrumen-
tal systematics, causing a blind application of the classification
codes to produce suboptimal results. Fortunately, the large num-
ber of light curves in the CoRoT database allows us to identify
the most obvious systematics.
After a first exploratory analysis, we found that the major con-
tamination of the light curve parameters was caused by the or-
bital frequency (around 13.97 d−1) and its higher harmonics.
Even though the amplitudes of these peaks are low (typically be-
low 900 parts per million, ppm hereafter), they clearly stand far
above the low CoRoT noise level. Spectral peaks related to the
orbital frequency were therefore ignored in the frequency analy-
sis procedure.
Other clear systematics in the light curves are the long-term
trends. Even though we first subtracted a second order polyno-
mial prior to frequency analysis, a lot of significant peaks re-
mained in the low frequency part of the amplitude spectrum. For
a large number of light curves, the highest peak in the entire am-
plitude spectrum stem from these trends, especially for the long
run data. To avoid these being selected as frequencies, hence as
classification attributes, we ignored the lowest frequency part in
the spectrum. The lower limit was adjusted, depending on the

observing run. As a drawback, we were not able to correctly de-
tect pulsators with periods longer than typically those of classi-
cal Cepheids. This is fine, given that the CoRoT target selection
avoided supergiant variables anyhow.
Additional systematics were identified in some of the light
curves. Depending on the run, spurious frequencies around 1
d−1 were detected. They are related to variations in the amount
of received stray light due to the Earth’s day/night cycle. These
can cause sidelobes to appear around the orbital peaks as well
(at 13.97 − 1 d−1 and 13.97 + 1 d−1, the same occurs for the
higher harmonics). The amplitudes of those peaks are usually
much less than the amplitudes of the orbital harmonic frequen-
cies. We chose not to exclude those as well, since this would
increase the risk of missing real frequencies. Rejecting frequen-
cies close to 1 d−1 risks missing real pulsation frequencies of
B or F-type pulsators such as slowly pulsating B (SPB) or γ-
Doradus stars, which are among the most interesting targets for
asteroseismology.

5. The CoRoT variability classifier

After the light curve analysis process, the parameters are trans-
formed into suitable classification attributes and are used as in-
put for two different supervised classification methods: multi-
stage Bayesian networks (MSBN) and Gaussian mixtures (GM).
Both methods, as well as the construction of the original com-
mon training set, have been described in detail in Paper I, to
which we refer for details. The same methodology was used as a
starting point for classifying the CoRoT exoplanet data. After a
first evaluation of the results, adaptations were made in order to
optimize the performance when applied to CoRoT data. These
include improving the training set, investigating new attributes,
better separating the multiperiodic variables, and including new
classes.

5.1. Adapting the training set

Ideally, a training set should be constructed from data measured
with the same instrument as the data to be classified. This is usu-
ally not feasible because constructing a completely new train-
ing set for every new database would be very time-consuming.
Moreover, the database will most often not contain enough good
candidate class members, to be used for training. Luckily, as
shown in Paper II, there is no need to construct a completely new
training set every time a new database is classified, provided that
the kind and quality of the data are not too different.
In a first application of our codes to the CoRoT data, we used the
original training set as defined in Paper I. This already gave sat-
isfactory results for the recognised classes such as eclipsing bi-
naries, classical pulsators, and non-radial pulsators, such as SPB
and δ-Scuti stars. It was clear, however, that misclassifications
occurred because of the difference in quality and systematics of
the data present in the training set and the much higher quality
CoRoT data.
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Stellar variability class # CoRoT LCs
Variable Be-stars 5
β-Cephei stars 6
δ-Scuti stars 23
Ellipsoidal variables 7
γ-Doradus stars 2
Slowly Pulsating B-stars 21
Eclipsing binaries 31
RR-Lyrae, type ab 3
Double mode RR-Lyrae stars 1
Low-amplitude periodic variables 15

Table 2. Variability classes whose definition stars have been ex-
tended/replaced with CoRoT data, and the number of definition
CoRoT light curves used.

We improved the training set in an iterative way. Candidate lists
obtained with the first version of the classifiers and the old train-
ing set were used to select bona-fide (or at least very probable)
class members among the CoRoT targets, suitable for inclusions
in the training set. Unfortunately, this was only possible for some
classes (listed in Table 2). We hope to include CoRoT members
for other classes in the future, when more data is available.
Apart from improving the already existing class definitions, we
also included a new class in the training set: low-amplitude pe-
riodic variables (LAPV). The definition objects for this class in-
clude candidate low-amplitude Cepheids, but also stars show-
ing very regular periodic light variations due to rotation (e.g.
stellar spots). The latter can be difficult to distinguish from a
Cepheid light curve, without additional colour information. The
low-amplitude Cepheids were already known as a class of stars
(see Buchler et al. 2005), but it is only now with CoRoT that
good quality light curves of low-amplitude variables have be-
come available. The light curve shapes are very similar to those
of Classical Cepheids, but the main pulsation amplitude is sig-
nificantly lower. These pulsations are predicted by theory at the
borders of the Cepheid instability strip. Figure 1 shows four
light curves of low-amplitude periodic variables, measured in
the IRa01 observing run. We also show a phase plot made with
the dominant, detected frequency, after subtraction of a trend, if
any. These light curves have been included in the LAPV class
definition.

5.2. Adaptations of the classifiers

Apart from the necessary re-training of the classifiers after the
extension of the training set with CoRoT data, the design of
the classifiers was also adapted. The multi-stage design of the
MSBN classifier was altered to include a new stage for a better
separation of the multiperiodic variables (GDOR, DSCUT, SPB,
BCEP, and PVSG). These changes, in combination with the new
training set also largely solved the problem of some good SPB
candidates being misclassified as ellipsoidal variables in the first
version of the classifier.
We implemented a multistage approach for the GM classifier as
well. It is just a simple two-stage design: the first stage attempts
to separate the binaries from other variability types, using only
a small set of attributes (frequency ratios and phase differences).
The second stage attempts to separate all the other classes, using
a different and larger set of attributes. This approach effectively
increased the number of correct classifications for binaries.

Stellar variability class Abbreviation
β-Cephei stars BCEP
Variable Be-stars BE
Classical Cepheids CLCEP
Chemically peculiar stars CP
Double-mode Cepheids DMCEP
δ-Scuti stars DSCUT
Eclipsing binaries (all types) ECL
Ellipsoidal variables ELL
FU-Ori stars FUORI
γ-Doradus stars GDOR
Herbig Ae/Be stars HAEBE
Low-amplitude periodic variables LAPV
Lambda-Bootis variables LBOO
Luminous Blue variables LBV
Mira variables MIRA
Population II Cepheids PTCEP
Periodically variable supergiants PVSG
RR-Lyrae stars, subtype ab RRAB
RR-Lyrae stars, subtype c RRC
Double-mode RR-Lyrae stars RRD
RV-Tauri stars RVTAU
Pulsating subdwarf B-stars SDBV
Slowly pulsating B-stars SPB
Short-period δ-Scuti variables SPDS
Semi-regular variables SR
SX-Phe stars SXPHE
T-Tauri stars TTAU
Wolf-Rayet stars WR
X-ray binaries XB

Table 3. The different variability classes considered by the CVC
and our abbreviations.

6. The CoRoT N3 product description

In this section, we describe the CVC N3 product, to be made
available to the scientific community along with the full CoRoT
data release. The information present in the N3 product should
allow scientists to make candidate lists of their objects of study
and to obtain some basic light curve information. We recall that
we did not perform detailed light curve modelling, only a basic
one, sufficient for producing class memberships for each target.
For every measured field, an ASCII file with CVC results will be
delivered. The files contain one line per light curve, listing the
following information in the columns:

1) objectname=CoRoT ID
2-4) classprob1-3=relative probabilities for three most likely

class memberships, obtained with the MSBN classifier
5-7) classcode1-3=corresponding to the three most likely vari-

ability class memberships, in decreasing order of probability
8-10) P f1−3=significance parameters for the three dominant fre-

quencies f1, f2, f3 (probability)
11-13) f1−3=three dominant independent frequencies f1, f2, f3

(units: d−1)
14-17) amp11-14=amplitude of f1, 2 f1, 3 f1, 4 f1 (units: mag)
18-21) amp21-24=amplitude of f2, 2 f2, 3 f2, 4 f2 (units: mag)
22-25) amp31-34=amplitude of f3, 2 f3, 3 f3, 4 f3 (units: mag)
26-28) phdiff12-14=phase of 2 f1, 3 f1, 4 f1, if phase of f1=0

(units: rad)
29-32) phdiff21-24=phase of f2, 2 f2, 3 f2, 4 f2, if phase of f1=0

(units: rad)
33-36) phdiff31-34=phase of f3, 2 f3, 3 f3, 4 f3, if phase of f1=0

(units: rad)
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Fig. 1. Some CoRoT light curves of low-amplitude periodic variables, measured in the IRa01. The original N2 level light curve is
shown with a phase plot after detrending, made with the dominant detected frequency (given below the plot).

37) varred=total variance reduction of the trend-subtracted light
curve, after subtraction of the least-squares fits with the 3
frequencies and their harmonics (values between 0 and 1)

The codes used to abbreviate the variability classes in the CVC
N3 product are listed in Table 3.

6.1. Variability indicators and significance testing

The CVC N3 output includes significance parameters that allow
users to select the clear variables, but also to have an idea of
the significance of the 3 frequencies separately. These are the
probability parameters P f1 , P f2 , and P f3 , one for every detected
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Fig. 2. The P-values of the F-test as a function of the estimated
S/N.

frequency. The derivation and interpretation of those parameters
deserves some explanation. First of all, they are not to be inter-
preted as the probability that the found frequency is significant.
These are P-values resulting from a statistical Fisher-test (F-test)
on the ratio of the variance before and after subtracting a har-
monic least-squares fit (for each of the frequencies f1, f2, and f3
separately). We use a single-tailed version of the test, since sub-
tracting a least-squares fit always causes a reduction in variance.
The motivation to use an F-test is as follows. Assume that a
‘constant’ CoRoT light curve is generated by a Gaussian ran-
dom process: each measurement is independently ‘drawn’ from
a Gaussian distribution N(µ,σ), where µ and σ are identical for
every measurement in the light curve (but are allowed to be dif-
ferent for other light curves). As it turns out, the assumption
of Gaussian noise is a very reasonable one for the CoRoT light
curves. Imagine we perform frequency analysis on such a con-
stant light curve. We will always find a highest peak in the power
spectrum, and we use the corresponding frequency to make a
harmonic least-squares fit to the light curve. After subtracting
the fit from the original data, we compare the variance of the
data before and after subtracting the fit. We expect that the vari-
ance will not be significantly reduced in this case, because no
periodicity is present in the data, and we just picked a frequency
corresponding to the highest noise peak in the spectrum. On the
other hand, imagine that a clear periodic signal is present in the
light curve, on top of the Gaussian noise. In this case, we will see
a clear peak in the power spectrum, and subtracting a harmonic
fit with the corresponding frequency will significantly reduce the
variance of the data. We test the null-hypothesis (H0) of equal
variances in the data before and after subtraction of a periodic
signal. The resulting P-values can now be used to have an idea
of the significance of the subtracted signal. P-values close to 1
indicate that we should not reject the null-hypothesis, meaning
that we are dealing with an insignificant reduction in variance,
hence an insignificant signal. P-values close to zero indicate that
we should reject the null hypothesis, meaning that we have a sig-
nificant reduction in variance, hence a significant signal. In the
usual application of the F-test to assess the difference in vari-
ance between two independent samples drawn from a normal
distribution, one has to define a significance level α (typically
α=0.05 or 0.01). For the single-tailed version of the F-test, the
null-hypothesis is rejected if P < α.
If we adopt the same approach here for testing the significance

of a periodic signal, it turns out that we would be far too con-
servative, in the sense that the null hypothesis would only be re-
jected for the very clear variables. The underlying reason is that
the test only takes the variances into account in the light curve
before and after fit-subtraction. Even though the variance differ-
ence might be too small to reject the null-hypothesis of equal
variances, it can still be very unlikely that most of this variance
difference is caused by a single (or only a few) spectral peak.
This is a disadvantage of the test compared to the more com-
mon signal-to-noise (S/N) criteria in the frequency domain (re-
lated to the false-alarm probabilities, see e.g. Breger et al. 1993;
Kuschnig et al. 1997). The P-values resulting from the test can
nevertheless be used to detect fainter signals, which are actually
within the acceptance interval of H0. For this purpose, we did
tests on simulated light curves consisting of pure Gaussian noise
(σ=1), with a periodic signal (f=1 d−1) of increasing amplitude
added. Every light curve consisted of 10000 points, in the same
order of magnitude as for the CoRoT light curves. We simulated
100 lightcurves, for each value of the amplitude (0.05, 0.1, 0.15,
0.20, 0.25 and 0.3). The idea is to cover a wide range of am-
plitude S/N and to show the relation with the P-values resulting
from the F-test. The S/N of the highest peak was determined by
averaging in the amplitude spectrum (excluding the frequency
region around the known peak position). We note that the calcu-
lated S/N does not always correspond to the 1 d−1 peak for the
lowest amplitude (0.05), because the noise peaks are dominant
here in most cases. Figure 2 shows the result of the simulations.
Each point in the plot corresponds to one simulated light curve.
The relation between S/N and P-value is obvious. As can be seen
from the plot, an S/N of 4 (typically used to accept a peak as sig-
nificant in pulsating star research, e.g. Breger et al. 1993) lies
within the acceptance region of H0 (for any reasonable value of
α), but for higher values of the S/N, the decrease in P-value is
obvious and can in principle be used to identify significant peri-
odic signals.
An advantage of this variability indicator with respect to single-
spectral peak criteria is that it can be used for a generic periodic
signal, irrespective of the signal shape. Here, we use it to test
the significance of a periodic signal of the form (for each of the
three frequencies separately):

y(t) =

4∑

i=1

Ai sin(2π f it + φi) + b0. (2)

This form of signal provides a better description of an eclips-
ing binary light curve, e.g., compared to a single sine fit. Even
though the spectral peak corresponding to the orbital period (or
half the orbital period) might not be significant, the periodic sig-
nal including the higher harmonics can easily be significant in
that case. Furthermore, using this method, there is no need to es-
timate an amplitude S/N of the identified spectral peaks. Making
those estimates can be ambiguous, certainly when done in an au-
tomated way. Indeed, the noise level in the amplitude spectrum
is usually estimated by averaging the spectrum over a frequency
interval without any significant peaks. Choosing such an interval
in an automated way is not obvious and may lead to improper es-
timates of the noise level.

6.2. Interpreting the classification results

In this section, we provide guidelines for users on how to make
candidate lists of their preferred objects, based on the informa-
tion provided in the N3 product. First of all, if one is interested in
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extracting all those stars with a high confidence level of variabil-
ity, the above-mentioned significance parameters can be used to
select them (Fig. 2 is helpful in choosing suitable cutoff-values).
Next, if the preferred object type is in the list of classes con-
sidered by the classifiers, the objects classified as such can be
selected. For most of the classes (especially for the poorly de-
fined ones), this candidate list will be contaminated by false pos-
itives, i.e., objects incorrectly assigned to the class. A supervised
classification assigns every light curve to one of the pre-defined
classes, even if it actually belongs to a class not included in the
classification scheme, or if no clear variability is present. False
positives are thus unavoidable.
The candidate lists can be cleaned further by imposing limits on
the class probabilities. In general, the higher the cutoff value for
the probability, the less false positives present in the resulting
candidate list, and the more similar the light curves will be to
the ones in the training set. We stress, however, that a low class
probability (below 50%) does not necessarily mean that we are
dealing with a poor candidate; for example, BCEP and DSCUT
stars both show low order p-mode pulsations with a similar fre-
quency range. Usually, the light curve information will be suffi-
ciently discriminating to conclude that the object belongs either
to the DSCUT class or to the BCEP class, but it might be diffi-
cult to decide which of the two is the real class. As a results, the
light curve of a BCEP star might get similar probabilities for the
BCEP and DSCUT classes, each below 0.5, but adding up to a
value well above 0.5. In these cases, it is useful to have a look
at the second and even the third most probable classes, and their
corresponding probabilities. It is very important, in light of the
BCEP-DSCUT case, to stress here that the MSBN membership
probabilities basically reflect the knowledge about the relative
prevalences (the prior probabilities) of the different variability
classes implicit in the training set. In other words, a 50% class
probability in both BCEP and DSCUT categories for a target re-
flects that the number of training examples of each class in the
neighbourhood of the target parameters is equal. Unfortunately,
it is extremely difficult (and sometimes even undesirable) to re-
flect the real prior probabilities in the training set. These prob-
abilities change as a function of the age and metallicity of the
environment and are, in any case, very difficult to determine.
Empirically, any derived prior probability will be biased by the
detection limit of the experiment, and low S/N signals will sys-
tematically be underrepresented in these estimates. Furthermore,
it is sometimes convenient to overrepresent unlikely classes in
the training set in order to improve detectability of rare ob-
jects (although this can also be accomplished by using tailored
loss matrices to penalise unwanted misclassifications during the
training of the classifiers). In any case, the ongoing improve-
ment of the training set necessarily involves correctly determin-
ing these prior probabilities and is the subject of ongoing inves-
tigation in the framework of the Gaia and CoRoT projects (Sarro
et al., in preparation).
We list the classification results for all objects, also for non-
variable objects. Of course, if an object does not show any vari-
ability, the classification results should be disregarded (since we
did not include a class of ‘constant’ stars). The reason we prefer
to also list the results for non-variables is twofold: first, we have
to calculate all the light curve parameters anyway, because the
current classifiers require a fixed number of attributes. Second,
simulations have shown that noisy light curves of eclipsing bina-
ries can still be classified correctly, even though the most com-
mon variability tests would tend to disregard the light curve
as non-variable. Some of the light curve parameters typical of
eclipsing binaries are less sensitive to the noise level, and they al-

low for a correct identification even at S/N. In general, of course,
the classification results for light curves of non-variables are not
to be trusted.
Some variables actually belong to two (or even more) variability
classes. Take for example a pulsating star in an eclipsing binary
system: the system as a whole belongs to the eclipsing binary
category, while the pulsating component might be, e.g., an SPB
or a DSCUT type. How are these kinds of light curves classified?
Currently, we do not have separate classes for these ‘mixed’ ob-
jects. It would be difficult to define such classes, since several
combinations of pulsating stars in binary systems are possible.
We also do not have enough example light curves available yet
to be able to define such new classes. With the current version
of the classifiers, these objects will be classified as a pulsating
star or an eclipsing binary, depending on the relative strength
of both phenomena in the light curve. To illustrate this, Fig. 3
shows good examples of pulsating stars in binary systems. Here,
the pulsations dominate the eclipses, in the sense that the highest
peaks in the frequency spectrum are related to the pulsations and
not to the binary orbit (remember, we only use the 3 most dom-
inant frequencies in the spectrum). These objects are therefore
not classified as eclipsing binaries, but as belonging to one of
the pulsating star categories. The reverse situation, in which the
highest peaks in the spectrum relate to the binary orbit, is also
possible. In this case, the ‘mixed’ object will be classified as
an eclipsing binary. In some situations, the dominant frequency
might be a pulsation frequency, while the second frequency is
related to the orbit. If this orbital frequency happens to be within
the range of typical pulsation frequencies of the type of pulsator
in the binary system, the object can be classified as the pulsator
type. If, on the other hand, the orbital frequency is far outside
this range, the object will probably not be classified as pulsator
type. It will also not be classified as an eclipsing binary, since
most of the typical characteristics of ‘pure’ eclipsing binaries
in the training set relate to the first frequency and its harmon-
ics. Hence, in this situation, the outcome of the classification is
unpredictable. We cannot avoid this with the current versions of
the classifiers, but research continues to detect such special cases
more robustly.

7. Classification results

We present the classification results for the first four measured
exoplanet fields. Since there are so many lightcurves (39659),
we obviously cannot give a detailed description for each object
separately. We present an overview of the results per run in terms
of numbers of detected variables and the fractions of objects as-
signed to every class. Light curves and phase plots of some of
the best candidates are shown.

7.1. Number of variables

Since the CoRoT data are unprecedented in terms of photomet-
ric precision and time sampling, it is interesting to see how many
stars appear to be variable through the eyes of CoRoT. We do
point out that the sample of stars is not random. Indeed, as the
main goal was to search for planets, supergiants and giants were
avoided as much as possible in the target selection; i.e., the sam-
ple is heavily biased towards main-sequence stars.
We used the three frequencies and their corresponding signif-
icance parameters, resulting from the light curve analysis, to
obtain estimates of the number of variables. These estimates
have to be treated with caution, since, at this stage, almost all
of the light curves show variability due to instrumental effects.
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Observing run % of objects fmin , Pmax

IRa01 47 0.1 d−1, 0.2
42 0.1 d−1, 0.1
20 0.2 d−1, 0.2
18 0.2 d−1, 0.1

LRc01 50 0.1 d−1, 0.2
44 0.1 d−1, 0.1
15 0.2 d−1, 0.2
13 0.2 d−1, 0.1

SRc01 40 0.1 d−1, 0.2
35 0.1 d−1, 0.1
34 0.2 d−1, 0.2
29 0.2 d−1, 0.1

LRa01 41 0.1 d−1, 0.2
35 0.1 d−1, 0.1
16 0.2 d−1, 0.2
15 0.2 d−1, 0.1

Table 4. Fraction of light curves in every run, fulfilling the crite-
ria fi > fmin and P fi < Pmax for at least one of the 3 fi’s, for four
combinations of the thresholds fmin and Pmax.

Fortunately, most of this instrumental variability is systematic
and the corresponding spectral signatures are confined to certain
frequency regions in the amplitude spectrum. We were thus able
to distinguish reasonably well between real (intrinsic to the ob-
served object) and instrumental variability by avoiding spectral
peaks situated in the contaminated regions. As a drawback, spec-
tral peaks in these regions related to real variability were missed.
This means that we underestimated the real number of variable
light curves.
We already avoided frequencies related to the satellite orbit
during the light curve analysis procedure, and also the lowest-
frequency end of the spectrum. Plots of the values for f1, f2,
and f3 reveal that low-frequency peaks are still selected. For se-
lecting candidate variables, we only accepted frequency values
above a certain threshold fmin and with a corresponding signif-
icance parameter below a threshold Pmax. If at least one of the
three frequencies detected in the light curve fulfilled both cri-
teria, the star was accepted as being variable. It was difficult to
decide on the best value for both thresholds, providing the most
reliable estimate of the number of variables. We therefore list
numbers for a few combinations of these parameters, in order
of increasing stringency: ( fmin, Pmax) = (0.1 d−1, 0.2), (0.1 d−1,
0.1), (0.2 d−1, 0.2), and (0.2 d−1, 0.1) . Table 4 lists the resulting
percentages of selected light curve for every observing run. We
see that more than 40% of the stars are variable at some level if
we allow periodicities up to 10 days.

7.2. Class populations

Complete classification results for the four observing runs, ob-
tained with the MSBN and the GM classifiers, are presented
in Tables 5 to 8. The GM classifier takes less classes into ac-
count than does the MSBN classifier. For example the SPDS
and SXPHE classes could not be taken into account because
there were not enough training instances for the GM classi-
fier (see Paper I). Also, some classes were left out on purpose
even though sufficient training examples are available for them.
It concerns the classes WR, TTAU, XB, HAEBE, FUORI, and
LBV. These are poorly defined on the basis of light curve in-
formation alone, because their variability can be very irregular.
Moreover, such stars were avoided in the target selection, as ex-
plained above. Including them in the GM classification scheme

increases the number of misclassifications.
To improve the GM classification performance for eclipsing bi-
naries, we artificially split this class up into two subclasses,
namely ECLF and ECLP. This subdivision is not based on any
astrophysical differences between the objects, but is more a nu-
merical trick to increase the number of correct classifications
for this special class of variables. The ECLF subclass contains
eclipsing binaries having f1/ f2=2, and the ECLP subclass con-
tains eclipsing binaries having phdiff12=-π/2, phdiff13=±π, and
phdiff14=-π/2. Most prototypical light curves of eclipsing bina-
ries fulfil both criteria; e.g., they have both the characteristic fre-
quency ratio and phase differences. The subdivision allows cor-
rect classification for the light curves of binaries fulfilling only
one of the two criteria.
The numbers of objects per class are obtained by counting all
objects having the respective classcode as the most probable one
and having a corresponding class probability classprob1 > pmin.
For the MSBN classifier, numbers are listed for 3 different cutoff
values pmin: 0.0, 0.5, and 0.7. The same probability cutoff values
are used in the tables listing the GM results, but there we provide
additional tables, obtained by imposing different restrictions on
the Mahalanobis distance to the class centres. The precise mean-
ing of this quantity is explained in Paper I, to which we refer for
details. In short, it is a multi-dimensional generalisation of the
one-dimensional statistical or standard distance (e.g. distance to
the mean value of a Gaussian in terms of σ). It can be used ef-
fectively to reject objects that are unlikely to belong to the class
(large distance to the class centres), even if the relative probabil-
ity for that class is high.
When looking at the first columns in Tables 5 and 6 (no restric-
tions on probability or Mahalanobis distance), one notices that a
few out of the total set of considered classes seem to be strongly
overpopulated (lots of light curves having the highest probabil-
ity of belonging to these classes). These will typically be the
poorly defined classes (wide spread in parameter space), such
as PVSG, BE, CP, and LBV. As already mentioned in Sect. 6.2,
most of these classifications will be false positives. Light curves
with instrumental artifacts and light curves which do not fit the
properties of the other classes also end up in these overpopu-
lated classes. We tend to call these the ‘trash’ classes, but we
stress that also some potentially interesting objects, not belong-
ing to any of the pre-defined classes, or objects having a mixed
nature (e.g. pulsating stars in eclipsing binary systems) can end
up here.

7.2.1. Eclipsing binaries and ellipsoidal variables

Irrespective of the observed region on the sas it willky, we should
always find a number of binaries: eclipsing binaries and ellip-
soidal variables. This is reflected in the classification results,
obtained with both classifiers. Most eclipsing binary candidates
have a high probability of belonging to the ECL class and im-
posing stronger limits on the class probability does not alter the
candidate lists much. Since eclipsing binary light curves are very
different from those of pulsating variables, they are generally
well separated. This translates into high relative class probabil-
ities. The fractions we find are in the range 1 − 2%, depending
on the observed field. The largest fractions are found for IRa01
and SRc01, even though the time series have a shorter total time
span. Assuming that the total fraction of detectable binaries is
more or less the same for these observed fields, this can proba-
bly be attributed to instrumental artifacts. Light curves of longer
duration have a higher chance of being influenced by instru-
mental variability. This is confirmed by visual inspection of a
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large fraction of LRa01 light curves. Some are misclassified by
the presence of large discontinuities caused by cosmic-ray hits
(introducing spurious peaks at low frequencies in the amplitude
spectrum). Figure 4 shows some good examples of eclipsing bi-
nary light curves, correctly identified by the CVC.

7.2.2. Monoperiodic pulsators

As already emphasised, the selection of the CoRoT exoplanet
observation fields is biased towards cool main-sequence stars,
such that we do not expect to find many classical radial pul-
sators. This is indeed confirmed by the CVC classification re-
sults. These are the classes of variables best recognised by the
classifiers, as shown in Papers I and II. The chance of miss-
ing them is very small, even with some discontinuities in the
light curves, since these pulsators have large amplitudes com-
pared to the order of magnitude of typical discontinuities. Some
examples of the few classical pulsators we could detect are
shown in Fig. 5, among them an RR-Lyrae star with a very
clear Blazhko-effect (see Blazhko 1907), a double-mode RR-
Lyrae, and a Cepheid pulsator. The number of detected clas-
sical Cepheids is very small, but possibly some low-amplitude
Cepheids are present. Candidate low-amplitude Cepheids end up
in the LAPV class. As can be seen from Tables 5 to 8, this class is
well-populated for every observing run. At most a minor fraction
of these variables are expected to be candidate low-amplitude
Cepheids, since super giant stars have been avoided as much as
possible in the target selection procedure. The large majority of
the variables assigned to this class are most likely stars with vari-
ability due to rotation. Rotation can produce light curves that are
difficult to distinguish from the typical skew-symmetric Cepheid
light curves, if no other than CoRoT light curve information is
available. Spectral information is needed and light curves with
a longer total time span, to see whether the detected periods re-
main stable over time. Some of the rotationally modulated light
curves have shorter periods than those of typical Cepheids, oth-
ers have bumps or dips that are not typical of Cepheids either.
Those objects can thus be distinguished by using the periods,
the ratios of the different harmonic amplitudes, and their phase-
differences. We are currently investigating whether this can be
done in an automated way, with the aim of including a subclass
of rotational variables.
It is clear that the CoRoT sample of variable stars is indeed heav-
ily biased and completely different from, e.g., the HIPPARCOS
or OGLE II sample (see Paper II and Sarro et al., submitted to
A&A). In the latter, the classical radial pulsators (evolved stars)
are represented very well and constitute a major fraction of the
detected variable stars (especially in the OGLE case), while they
are almost completely absent in the CoRoT sample. As discussed
in the next section, the situation is exactly the opposite for the
multiperiodic pulsators, but CoRoTs detection capabilities are a
major factor there.

7.2.3. Multiperiodic pulsators

We find many more candidate multiperiodic (non-radial) pul-
sators in comparison with the number of monoperiodic pul-
sators. Part of this is again explained by the criteria used to select
the CoRoT observing fields and the bias towards main-sequence
stars. The main reason, however, is the high photometric preci-
sion and continuous time sampling of CoRoT. In general, multi-
periodic non-radial pulsators tend to have lower amplitudes than
the classical radial pulsators and are thus more difficult to detect.

CoRoT allows us to explore the low-amplitude variability in a
much better way, due to the low noise levels and the clean spec-
tral window function. Furthermore, the dense time sampling of
the CoRoT light curves allows much higher pulsation frequen-
cies to be detected than most ground-based surveys are able to.
Figure 6 illustrates that a major fraction of the detected variables
have very low amplitudes of variation. In this figure, we plotted
the fraction of objects having significant variability, and with an
amplitude amp11 below a certain threshold, as a function of this
threshold value. The variability criterion we used here is analo-
gous to the one described in Section 7.1. Objects were taken to
be variable if f1 ≥ 0.1 d−1 and P f1 ≤ 0.1. The steep rise of the
resulting curve at low amplitude thresholds is evident and shows
that the number of detectable variables is strongly increasing
with increasing amplitude detection level. A typical large-scale
ground-based survey fails to detect all the small-amplitude vari-
ables at mmag level.
Figure 7 shows some clear examples of candidate non-radial pul-
sators: δ-Scuti, γ-Doradus, β-Cephei, and SPB candidates, re-
spectively. Both the δ-Scuti and SPB classes are well-populated
for every observing run: visual inspection of the highest proba-
bility candidates revealed many good candidates. There are less
candidate γ-Doradus and β-Cephei stars. This is what one ex-
pects based on astrophysical grounds: β-Cephei stars are very
massive, hence less abundant. The γ-Doradus stars show pulsa-
tions in the same frequency range as SPB stars, but they have
lower amplitudes and thus are more difficult to detect. Also, our
classification is based on parameters derived from only a sin-
gle broad-band light curve. This implies that some of our SPB
candidates might in fact be γ-Doradus stars, since both classes
show significant overlap in light curve parameter space (similar
pulsation behaviour). The SPB stars are hotter, however, than γ-
Doradus stars, and a colour index (e.g. B-V) would significantly
increase the separability of the two classes. Amongst the SPB
sample, also good Be-star candidates are present. Be-stars show
variability because of the presence of a circumstellar disk, but
also because of pulsations. They are located in the same region
of the HR diagram as β-Cephei and SPB stars, explaining why
they can show similar pulsation behaviour. Spectral information
is needed to distinguish between the classes: for Be-stars, photo-
spheric Balmer line emission needs to be present at some stage.
Looking at the MSBN classification tables, we see that many ob-
jects are classified as SPDS (short period δ-Scuti). The majority
of them are false positives and can be rejected by imposing lim-
its on the class probability and the significance parameters P f1
(rejecting non-variables or very noisy ones). This class, whose
training objects are actually rapidly oscillating Ap stars (roAp),
attracts variables with high pulsation frequencies and low ampli-
tudes. We have chosen to rename the class from ROAP to SPDS,
because most of the objects assigned to it with high probability
are in fact good candidate δ-Scuti variables. The second most
probable class is often DSCUT, with non-zero probability. Also,
the typical pulsation frequencies of roAp stars are even higher
than what can be detected with the nominal CoRoT 512s time
sampling, so we do not expect to find roAp stars. In Fig. 8, we
show two examples of objects in the IRa01 that are most likely δ-
Scuti stars. They have been classified as SPDS with high proba-
bility because of their high pulsation frequencies. The amplitude
spectra clearly show several significant frequencies in the range
30 − 50 d−1. The amplitudes are low, but still far above the typ-
ical noise level of CoRoT, which is below 100 micromagnitude
for these examples from the IRa01. Below the amplitude spec-
tra, phase plots made with the frequency corresponding to the
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Fig. 6. Fraction of objects in the IRa01 with f1 ≥ 0.1 d−1, P f1 ≤
0.1, and having an amplitude amp11 below a certain threshold
value, as a function of the threshold value (in magnitude).

highest peak in the amplitude spectra are shown. These confirm
the presence of multiperiodic variability.

8. Conclusions

This work describes the application of the classification method-
ology presented in Papers I and II to the database of light
curves produced in the CoRoT exoplanet programme. The meth-
ods are broadly applicable, but database-specific adaptations al-
ways have to be made to maintain optimal classification perfor-
mance. This proved to be very important for the application to
the CoRoT data, since the data quality is much better than the
major fraction of the data used to construct the original training
set. We described how we extended the training set by includ-
ing high quality CoRoT data in an iterative way and how we
adapted the light curve analysis procedure to avoid instrumental
effects. Changes have been made to the classification methods
themselves as well. The combination of all these adaptations led
to increased classification performance.
Classification results and statistics on the number of variables
are presented for the first four measured fields of the exoplanet
programme of CoRoT. Conservative estimates show that up to
40% of all the light curves are variable. Irrespective of the ob-
served field, the class statistics show that there are more multi-
periodic pulsators than classical monoperiodic pulsators. This is
consistent with the bias towards main-sequence stars, thanks to
the CoRoT target selection procedure, which makes the sample
of variable stars very different from those obtained from large-
scale surveys such as HIPPARCOS and OGLE. It is also strongly
related to the high photometric precision and the continuous time
sampling of CoRoT, allowing us to detect more small-amplitude
variables. A significant fraction of (quasi-)monoperiodic vari-
ables with low amplitudes is present in every field. Most likely,
the majority of them are rotationally modulated variables, and
possibly, some of them are low-amplitude Cepheids. We have
yet to investigate if there are statistically significant differences
in the class populations from field to field. Some representative
light curves and phase plots for the different classes are shown,
illustrating the high quality of the CoRoT data and the capa-
bilities of our classifiers. The classification results and the de-
rived light curve parameters are made publicly available for ev-
ery observing run (CVC N3 product). Guidelines are given to

use these results for the creation of candidate lists with different
levels of contamination (or false positives). We strongly advise
users of the classification results to read these guidelines in ad-
vance, since they illustrate both the strengths and limitations of
the current methods. We stress that this is a statistical method
and that we can never guarantee 100% correct classifications.
Individual misclassifications will always occur, and their inci-
dence strongly depends on the variability class considered (as
can be seen from the confusion matrices presented in Paper I).
Our goal is of course to keep the number of misclassifications as
low as possible, and we continue to work on that.
The same methods will be applied to the data from the other
observed fields in the exoplanet programme, some of them yet
to be measured. We also plan to upgrade the results for the first
four fields presented here on the longer term. Since the database
is still growing, we will be able to extend the training set with
CoRoT data, and possibly include new classes and/or subclasses.
Other planned improvements include a better and fully auto-
mated treatment of discontinuities in the light curves, with the
goal of avoiding misclassifications related herewith. Since the
total number of stars in the CoRoT exoplanet database will be
more than twice the number we have already analysed in this
work, we expect to find many more candidate variables. Apart
from the eclipsing binaries, which are omnipresent, it is difficult
to say at this stage how many more candidates we will find for
each category. CoRoT is observing different regions of the galac-
tic centre and anti-centre, whose stellar populations can vary a
lot. The bias towards main-sequence stars still holds, however,
and the fraction of classical pulsators will remain small. The cor-
rection for instrumental effects will have the biggest influence on
low-amplitude variables, such as γ Doradus, δ Scuti, and eclips-
ing binaries with shallow eclipses. Their numbers are expected
to increase significantly (by several percents, relatively) after im-
provement of our methods. Based on astrophysical arguments,
we do not expect to find many good candidate β Cephei stars in
the CoRoT fields. Not only are those massive stars less abundant,
most stars in CoRoT’s exoplanet fields are also intrinsically too
faint to be of the β Cephei type, given their visual magnitudes in
combination with distance estimates.
This work has focused on the supervised classification of light
curves, a very efficient and fast method for identifying objects
of an already known variability type. As mentioned in Section
6.2, this method has some shortcomings as well. For example, it
is difficult to detect new types of objects, since the classes have
to be pre-defined. Therefore, to explore the full potential of the
CoRoT database, we are also applying unsupervised classifica-
tion methods to the data (better known as clustering techniques).
The methodology and the results will be published in a forth-
coming paper (Sarro et al., submitted). Finally, spectroscopic
observation time with the ESO VLT/FLAMES instrument was
obtained to observe the variables we identified in the IRa01 and
LRa01 CoRoT fields. The resulting spectra will help reveal and
confirm the truly variable nature of the objects we classified us-
ing only light curve information, so they will be important to
evaluate the classification results. Since spectra of several thou-
sands of objects will become available, it will be possible to in-
vestigate how classification attributes derived from these spectra
(e.g. equivalent line widths) can improve the classification per-
formance, both for supervised and unsupervised methods. An
extended classifier that also uses spectroscopic attributes could
be used and provided by e.g the VSOP project (variable star one-
shot project, Dall et al. 2007).
Acknowledgements. This work is made possible thanks to support from the
Belgian PRODEX programme under grant PEA C90199 (CoRoT Mission Data
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IRa01 LRc01 SRc01 LRa01
Class code All p > 0.5 p > 0.7 All p > 0.5 p > 0.7 All p > 0.5 p > 0.7 All p > 0.5 p > 0.7

BCEP 67 50 0 26 14 0 58 32 1 45 32 0
BE 1947 879 263 3317 1725 493 980 390 101 3720 1929 513

CLCEP 2 1 0 4 2 2 1 0 0 2 0 0
CP 470 205 43 758 384 81 261 67 11 844 422 76

DMCEP 1 0 0 1 1 0 1 1 1 0 0 0
DSCUT 380 225 42 87 54 7 444 233 29 321 192 29

ECL 161 135 128 142 106 85 139 120 93 186 149 129
ELL 68 1 0 96 5 0 48 5 1 98 9 1

FUORI 0 0 0 5 0 0 5 0 0 6 0 0
GDOR 16 0 0 0 0 0 14 1 0 2 0 0
HAEBE 6 0 0 5 2 0 4 0 0 5 2 1
LAPV 272 169 111 99 54 31 152 83 42 119 64 37
LBOO 7 0 0 0 0 0 18 0 0 0 0 0
LBV 730 5 1 728 1 0 397 0 0 449 1 1

MIRA 0 0 0 0 0 0 0 0 0 0 0 0
PTCEP 0 0 0 0 0 0 0 0 0 0 0 0
PVSG 2510 304 90 3986 300 73 1672 212 83 3268 300 92
RRAB 0 0 0 3 3 3 0 0 0 0 0 0
RRC 0 0 0 0 0 0 0 0 0 0 0 0
RRD 1 1 0 1 1 1 1 1 1 2 2 0

RVTAU 1 0 0 0 0 0 0 0 0 0 0 0
SDBV 21 4 1 13 3 2 12 7 3 25 5 1
SPB 462 294 66 159 86 23 325 172 15 435 324 100

SPDS 2693 1298 722 1889 371 59 2408 1349 831 1821 390 71
SR 2 2 1 5 0 0 3 2 0 1 0 0

SXPHE 0 0 0 0 0 0 2 0 0 0 0 0
TTAU 0 0 0 1 0 0 13 0 0 2 0 0
WR 48 3 0 76 4 0 13 2 0 50 2 0
XB 4 0 0 7 0 0 0 0 0 7 1 0

Table 5. Overview of the classification results obtained with the MSBN classifier, for each observing run, using 3 different cutoff
values for the highest class probability p=classprob1.

IRa01 LRc01 SRc01 LRa01
Class code All p > 0.5 p > 0.7 All p > 0.5 p > 0.7 All p > 0.5 p > 0.7 All p > 0.5 p > 0.7

BCEP 63 58 40 14 13 9 41 35 26 42 40 33
BE 1207 1157 941 520 490 349 1563 1528 1262 867 825 577

CLCEP 0 0 0 0 0 0 0 0 0 1 1 1
CP 93 69 21 93 69 27 82 66 17 97 65 27

DMCEP 0 0 0 0 0 0 0 0 0 0 0 0
DSCUT 151 146 141 45 45 43 69 69 64 197 195 179
ECLF 118 118 115 98 97 95 86 86 82 124 122 120
ECLP 57 57 55 34 31 29 56 52 47 67 64 63
ELL 3 2 1 3 3 1 6 6 4 1 1 1

GDOR 49 39 20 8 7 4 33 27 13 35 28 18
LAPV 420 413 355 196 187 143 167 165 150 305 297 254
LBOO 6 6 4 1 1 1 2 2 1 2 1 1
MIRA 0 0 0 0 0 0 0 0 0 0 0 0
PTCEP 0 0 0 1 0 0 2 2 1 0 0 0
PVSG 7605 7533 7055 10355 10284 9829 4780 4740 4309 9545 9444 8880
RRAB 0 0 0 2 2 1 0 0 0 0 0 0
RRC 0 0 0 0 0 0 0 0 0 0 0 0
RRD 0 0 0 1 1 1 0 0 0 0 0 0

RVTAU 0 0 0 0 0 0 5 5 4 0 0 0
SPB 92 89 83 32 32 27 37 36 33 125 122 114
SR 5 5 2 5 2 1 43 42 40 0 0 0

Table 6. Same as Table 5, but now obtained with the GM classifier, with no restriction on the Mahalanobis distance to the class
centre.
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IRa01 LRc01 SRc01 LRa01
Class code All p > 0.5 p > 0.7 All p > 0.5 p > 0.7 All p > 0.5 p > 0.7 All p > 0.5 p > 0.7

BCEP 49 47 35 11 10 30 36 32 26 38 37 30
BE 969 923 753 425 398 453 1448 1414 1189 709 668 453

CLCEP 0 0 0 0 0 1 0 0 0 1 1 1
CP 92 68 20 80 57 26 78 62 15 96 64 26

DMCEP 0 0 0 0 0 0 0 0 0 0 0 0
DSCUT 128 126 124 38 38 150 66 66 61 158 157 150
ECLF 112 112 112 95 95 118 82 82 82 118 118 118
ECLP 56 56 55 30 30 63 49 49 47 64 64 63
ELL 2 1 1 3 3 1 4 4 2 1 1 1

GDOR 44 35 18 7 6 14 30 24 11 31 24 14
LAPV 353 347 303 161 154 223 155 153 142 257 250 223
LBOO 6 6 4 1 1 1 2 2 1 2 1 1
MIRA 0 0 0 0 0 0 0 0 0 0 0 0
PTCEP 0 0 0 1 0 0 0 0 0 0 0 0
PVSG 3862 3794 3416 6762 6692 6210 3059 3020 2691 6820 6721 6210
RRAB 0 0 0 1 1 0 0 0 0 0 0 0
RRC 0 0 0 0 0 0 0 0 0 0 0 0
RRD 0 0 0 1 1 0 0 0 0 0 0 0

RVTAU 0 0 0 0 0 0 0 0 0 0 0 0
SPB 78 76 73 18 18 95 33 33 31 101 99 95
SR 5 5 2 5 2 0 1 0 0 0 0 0

Table 7. Same as Table 6, but now with a cutoff value of 2.0 for the Mahalanobis distance to the class centre.

IRa01 LRc01 SRc01 LRa01
Class code All p > 0.5 p > 0.7 All p > 0.5 p > 0.7 All p > 0.5 p > 0.7 All p > 0.5 p > 0.7

BCEP 22 21 17 6 6 4 16 15 13 14 14 14
BE 296 268 195 157 135 77 483 461 371 275 242 127

CLCEP 0 0 0 0 0 0 0 0 0 0 0 0
CP 76 55 17 51 36 9 71 57 14 63 42 20

DMCEP 0 0 0 0 0 0 0 0 0 0 0 0
DSCUT 74 74 73 24 24 24 38 38 38 92 92 91
ECLF 107 107 107 93 93 93 74 74 74 117 117 117
ECLP 46 46 46 26 26 25 42 42 41 59 59 58
ELL 1 1 1 1 1 0 3 3 2 1 1 1

GDOR 19 19 12 5 4 2 15 13 6 21 16 10
LAPV 204 202 189 59 59 50 80 80 76 128 125 116
LBOO 1 1 1 1 1 1 0 0 0 1 1 1
MIRA 0 0 0 0 0 0 0 0 0 0 0 0
PTCEP 0 0 0 1 0 0 0 0 0 0 0 0
PVSG 1263 1220 1004 2102 2049 1773 639 613 461 2224 2148 1823
RRAB 0 0 0 1 1 1 0 0 0 0 0 0
RRC 0 0 0 0 0 0 0 0 0 0 0 0
RRD 0 0 0 1 1 1 0 0 0 0 0 0

RVTAU 0 0 0 0 0 0 0 0 0 0 0 0
SPB 51 51 51 11 11 11 20 20 20 64 64 64
SR 5 5 2 5 2 1 1 0 0 0 0 0

Table 8. Same as Table 6, but now with a cutoff value of 1.0 for the Mahalanobis distance to the class centre.
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Fig. 3. Examples of pulsating stars in eclipsing binary systems. In these cases, the variability due to the pulsations dominates the
variability due to the eclipses, hence determines the class assignments. The light curves are classified by the MSBN classifier (from
top to bottom) as belonging to the BE, DSCUT, SPB, and DSCUT categories, respectively. The original N2 level light curve is
shown, together with a phase plot after detrending, made with the dominant detected frequency (given below the plot). Part of the
light curves of the first three objects have been measured in oversampling mode (32s integrations). Measurements are not averaged
out during oversampling, hence the higher scatter visible in those parts of the light curves.
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Fig. 4. Some examples of eclipsing binary light curves detected with the CVC. The original N2 level light curve is shown, together
with a phase plot after detrending, made with the orbital frequency (given below the plot).
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Fig. 5. Some examples of classical monoperiodic pulsators detected with the CVC in the LRc01 dataset. From top to bottom: RRab-
type pulsator, RRab-type pulsator showing the Blazhko effect, RRd-type (double-mode) pulsator, and a Cepheid type pulsator. The
original N2 level light curve is shown, together with a phase plot after detrending, made with the dominant pulsation frequency
(given below the plot).
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Fig. 7. Some examples of multiperiodic pulsators detected with the CVC. From top to bottom: a candidate δ-Scuti pulsator in the
IRa01, a candidate γ-Doradus pulsator in the IRa01, a candidate β-Cepheid in the SRc01 (oversampled, starting from HJD=2670),
and a candidate SPB pulsator in the LRc01. The original N2 level light curve is shown with a phase plot after detrending, made
with the dominant pulsation frequency (given below the plot). Part of the light curve of the third object has been measured in
oversampling mode (32s integrations). Measurements are not averaged out during oversampling, hence the higher scatter visible in
that part of the light curve.
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Fig. 8. Two examples of candidate short-period δ-Scuti (SPDS) variables in the IRa01. The amplitude spectra are shown at the top,
and a phase plot is displayed below, folded with the frequency corresponding to the highest peak in the amplitude spectrum (after
detrending of the light curve).


